The Complete Flux Scheme for Spherically Symmetric Conservation Laws
نویسندگان
چکیده
We apply the finite volume method to a spherically symmetric conservation law of advection-diffusion-reaction type. For the numerical flux we use the so-called complete flux scheme. In this scheme the flux is computed from a local boundary value problem for the complete equation, including the source term. As a result, the numerical flux is the superposition of a homogeneous flux and an inhomogeneous flux. The resulting scheme is second order accurate, uniformly in the Peclet numbers.
منابع مشابه
A total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملA new total variation diminishing implicit nonstandard finite difference scheme for conservation laws
In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...
متن کاملNumerical Investigation on Compressible Flow Characteristics in Axial Compressors Using a Multi Block Finite Volume Scheme
An unsteady two-dimensional numerical investigation was performed on the viscous flow passing through a multi-blade cascade. A Cartesian finite-volume approach was employed and it was linked to Van-Leer's and Roe's flux splitting schemes to evaluate inviscid flux terms. To prevent the oscillatory behavior of numerical results and to increase the accuracy, Monotonic Upstream Scheme for Conservat...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملOptimizing naturally driven air flow in a vertical pipe by changing the intensity and location of the wall heat flux
Heat transfer from the internal surfaces of a vertical pipe to the adjacent air gives rise to the air flow establishment within the pipe. With the aim of optimizing the convective air flow rate in a vertical pipe, the details of the flow and thermal fields were investigated in the present study. Conservation equations of mass, momentum, and energy were solved numerically using simple implicit f...
متن کامل